37 research outputs found

    Adjusting Sample Sizes for Different Categories of Embodied Cognition Research

    Get PDF
    Introduction Research in the field of embodied cognition is occupied with a variety of research questions stemming from the idea that cognition is deeply connected with bodily aspects such as perception and action (Barsalou, 1999, 2008). However, some embodiment studies have been identified to exhibit problems such as non-replicable results (Lakens, 2014). With this article, we wish to accomplish three aims: exemplifying ways of categorizing embodied cognition research in an informative manner; providing guidelines on how to identify problematic study designs; suggesting solutions for potentially problematic designs. Within the field of embodied cognition, several aspects are investigated as outlined by Wilson (2002). One example for embodiment mentioned by Wilson (2002) is gesturing (for an overview on gesturing, see Hostetter and Alibali, 2008). Embodied cognition theory can be used to analyze the relation between gestures and mental processes (e.g., Hostetter and Alibali, 2008). Furthermore, there is a debate around the question whether language and meaning are grounded in perceptual contents experienced through the body (e.g., Borghi et al., 2004; for an overview on grounded cognition, see Barsalou, 2010). Besides research on cognition, principles of embodied cognition have been applied to fields such as social psychology (see Meier et al., 2012, for an overview) and educational psychology (see Paas and Sweller, 2012, for an overview). For instance, research on embodiment in the context of social cognition has provided evidence for the claim that bodily sensations such as weight can alter judgments on importance (e.g., Ackerman et al., 2010). In educational psychology, one application of embodiment theory is the design of interactive learning environments (e.g., Johnson-Glenberg et al., 2014). In response to the current replication crisis in psychology (for discussions, see Pashler and Wagenmakers, 2012; Maxwell et al., 2015), several solutions have been proposed to improve the quality of psychological research (e.g., Chambers, 2013; Simons, 2014; LeBel, 2015; for overviews, see Ferguson, 2015; Zwaan et al., 2017). Benjamin et al. (2018) argue for a change of the standard 0.05 alpha level and instead support to lower the default alpha value for novel findings in the field of psychology to 0.005. Importantly, the sample size and power of studies have been described as pivotal contributors to replicable results (Fraley and Vazire, 2014). Multiple types of embodied cognition research are facing the problem of delivering non-replicable results as discussed in the literature (e.g., Rabelo et al., 2015). Perugini et al. (2014) present a method for the calculation of sample sizes for replication studies and confirmatory research that takes into account that observed effect sizes may be inaccurate estimates. They suggest to conduct sample size calculations using an effect size that is based on the lower bounds of the confidence interval computed for an observed effect size (Perugini et al., 2014). Another method is presented by Simonsohn (2015), who makes the argument that sample size calculations for replication studies should not merely use the effect sizes reported in the original research that is to be replicated. He explains that by increasing the sample size by the factor of 2.5, a replication study can be used to assess whether an effect is too small to have been appropriately captured in the original study (Simonsohn, 2015). This method has already been used in a recent replication study on embodied cognition effects (Ronay et al., 2017). We suggest to use one of the aforementioned methods of sample size calculation for studies involving embodiment-based manipulation types that are known for potential problems. In the following, we will present three important aspects that can be used to check whether an embodied cognition study design will need amendments such as an increased sample size

    The Cognitive-Affective-Social Theory of Learning in digital Environments (CASTLE)

    Full text link
    For a long time, research on individuals learning in digital environments was primarily based on cognitive-oriented theories. This paper aims at providing evidence that social processes affect individual learning with digital materials. Based on these theories and empirical results, a social-processes-augmented theory is suggested: the Cognitive-Affective-Social Theory of Learning in digital Environments (CASTLE). This CASTLE postulates that social cues in digital materials activate social schemata in learners leading to enhanced (para-)social, motivational, emotional, and metacognitive processes. To substantiate this theory, socio-cognitive theories are used, which predict social influences on learning with digital materials. Besides, previous empirical findings are presented assuming that with a rising number of social cues in digital materials, the influence of social processes increases. Finally, consequences regarding the design of digital learning media are discussed

    NaturalWalk: An Anatomy-based Synthesizer for Human Walking Motions

    Get PDF
    We present a novel data-driven approach for synthesizing human gait motions with individual style characteristics and natural appearance. Our approach is based on the concept of a motion signature that captures the essential characteristic of an individual walking motion. For each joint angle our motion model consists of a shape template and feature functions that describe the variation of that shape with the stride length. For the synthesis of a walking motion, the feature functions are evaluated for a desired stride length. Then the templates are adapted to match the computed features and used as progressions for the joint angles of the skeleton. We demonstrate our data driven approach using motion data captured from 12 individuals. We report on an experiment showing that the synthesized motions have a natural appearance and maintain the individual style.:1. Introduction 2. Related Work 3. Preliminaries 3.1 Mathematics of motion 3.2 Walking motions 4. Data acquisition and analysis 5. Shape templates and feature functions 5.1 Definition of template functions 5.2 Continuous representation of template functions 5.3 Building the feature functions 6. Motion Generation 6.1 Adaption of template functions 6.2 Computing the poses 7 Experimental Results 7.1 Numerical Evaluation 7.2 User Study Acknowledgment Reference

    BeeLife: a mobile application to foster environmental awareness in classroom settings

    Get PDF
    IntroductionSignificant threats to our environment tremendously affect biodiversity and related gains. Particularly wild bees actively contribute by pollinating plants and trees. Their increasing extinction comes with devastating consequences for nutrition and stability of our ecosystem. However, most people lack awareness about those species and their living conditions, preventing them to take on responsibility.MethodsWe introduce an intervention consisting of a mobile app and related project workshops that foster responsibility already at an early stage in life. Drawing on principles from multimedia learning and child-centered design, six gamified levels and accompanying nature-based activities sensitize for the importance of wild bees and their role for a stable and diverse ecosystem. A pilot evaluation across three schools, involving 44 children aged between 9 and 12, included a pre-, post-, and delayed post-test to inspect app usability and learning gains.ResultsMost children perceived the app as intuitive, engaging, and visually appealing, and sustainably benefited from our intervention in terms of retention performance. Teacher interviews following the intervention support the fit with the envisioned target group and the classroom setting.DiscussionTaken together, the obtained evidence emphasizes the benefits of our intervention, even though our sample size was limited due to dropouts. Future extensions might include adaptive instructional design elements to increase observable learning gains

    The Beaker phenomenon and the genomic transformation of northwest Europe

    Get PDF
    From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain’s gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries

    Measuring Cognitive Load in Embodied Learning Settings

    Get PDF
    In recent years, research on embodied cognition has inspired a number of studies on multimedia learning and instructional psychology. However, in contrast to traditional research on education and multimedia learning, studies on embodied learning (i.e., focusing on bodily action and perception in the context of education) in some cases pose new problems for the measurement of cognitive load. This review provides an overview over recent studies on embodied learning in which cognitive load was measured using surveys, behavioral data, or physiological measures. The different methods are assessed in terms of their success in finding differences of cognitive load in embodied learning scenarios. At the same time, we highlight the most important challenges for researchers aiming to include these measures into their study designs. The main issues we identified are: (1) Subjective measures must be appropriately phrased to be useful for embodied learning; (2) recent findings indicate potentials as well as problematic aspects of dual-task measures; (3) the use of physiological measures offers great potential, but may require mobile equipment in the context of embodied scenarios; (4) meta-cognitive measures can be useful extensions of cognitive load measurement for embodied learning

    E-Learning-Webseite als facettenreiches Werkzeug in Forschung und Lehre

    No full text
    Im Rahmen des blended learning kann eine E-Learning-Webseite als Begleitmaterial einer Lehrveranstaltung eingesetzt werden oder Studierende zur aktiven Teilnahme an der Erstellung der Webseiteninhalte anregen. Darüber hinaus eignet sich eine solche Webseite als Plattform zur E-Learning-Forschung. Auch empirische Studien können dort eingebettet werden. Eine weitere wissenschaftliche Anwendung bietet die Analyse des Nutzerverhaltens, mit der sich aktuelle Forschungsergebnisse zum Lernen mit Hypermedien überprüfen lassen. Wir beschreiben eine solche, vielseitig einsetzbare Webseite, die eine Verknüpfung von universitärer Lehre und Forschung ermöglicht und als Anregung für ähnliche Projekte dienen kann. Erste Erfahrungen werden dabei berichtet und ausgewählte Empfehlungen für Dozierende und Forscher abgeleitet.In the context of blended learning a web page might provide accompanying material for a course or encourage students to participate actively in preparing content. Moreover, such a web page could be a platform for e-learning research and empirical studies might be embedded into the page. The analysis of the user's behavior can be applied to verify current research results concerning learning with hypermedia. We describe such a versatile web page, which combines university apprenticeship and research. First experiences are reported and may lead to similar projects as well as convey selected recommendations for lecturer and researcher

    Embodied learning: introducing a taxonomy based on bodily engagement and task integration

    Get PDF
    Research on learning and education is increasingly influenced by theories of embodied cognition. Several embodiment-based interventions have been empirically investigated, including gesturing, interactive digital media, and bodily activity in general. This review aims to present the most important theoretical foundations of embodied cognition and their application to educational research. Furthermore, we critically review recent research concerning the effectiveness of embodiment interventions and develop a taxonomy to more properly characterize research on embodied cognition. The main dimensions of this taxonomy are bodily engagement (i.e. how much bodily activity is involved) and task integration (i.e. whether bodily activities are related to a learning task in a meaningful way or not). By locating studies on the 2 × 2 grid resulting from this taxonomy and assessing the corresponding learning outcomes, we identify opportunities, problems, and challenges of research on embodied learning
    corecore